| Strand | | Year 6 | Year 7 | Year 8 | Year 9 | Year 10 | Year 11 | Year 12 | Rationale | |--------|-------------------------------------|--|--|---|--|--|--|-----------|--| | umber | Place Value | | Place Value including decimals Rounding (all multiples) including 1 d.p. | Round to 1 significant figure for numbers greater than 1 Estimation (numbers greater than 1 only) Round to 2-3 significant figures | Significant figures including numbers less than 1 Estimate (including numbers less than 1) Error Intervals for powers of 10 Estimate more complex calculations | Error intervals from Calculations
Significant figures including numbers
less than 1
Estimate (including numbers less than
1) | Error intervals | | Rounding has been done since at least 2000 BCE Understanding the error implicit in a measurement, and how these errors can be compounded by further manipulation is key in both physical and statistical measurement. | | | | Add and subtract positive integers multiply THTU by TU Division using factors Long division Equivalent fractions & simplifying Fractions on a number line Compare and order fractions Add and subtract fractions Multiply fractions by integers Multiply fractions by integers Divide fractions by integers Mixed calculations with fractions Fraction of an amount Reverse fraction of an amount Mult & div by 10, 100, 1000 Mult decimals by integers Divide decimals by integers | Four rules with decimals
(multiply & divide by integers only) | Multiply & divide by multiples of
powers of 10
Multiply decimals by decimals
Add + subtract mixed number
fractions (not improper) | Divide by decimals
Use fraction, decimal equivalence to
calculate efficiently
Four rules with fractions | [Multi-step, interleave area & | Combo fraction
[Multi-step, interleave area &
perimeter] | | Decimal fractions were first developed in China in the 4th Century BCE | | | Calculating | | | Use fraction, decimal equivalence to calculate efficiently Order of operations (including squares | improper) | Fraction calculations in reverse
Recap 4 rules
Four rules with mixed numbers | | | Multi-base arithmetic reciprocals | | | Operations | | Order of operations
Basic use of a calculator | Order of operations (including squares and roots) Basic use of a calculator - use of fraction, square (root) keys Order of operations (Distributive property) | property) Use of fraction, index and negative keys Use calculator for standard form | (Embedded) Use of calculator Standard form calculations (simple cases) | | Modelling | Precedence' is generally defined so that higher-level operations are performed first. The distributive law is one of the 9 Field axioms of mathematics, fundamental to how arithmetic; in all its forms, | | Z | Negatives | Use negative numbers in context | Compare and order directed numbers | Multiply and divide with negatives Squaring negatives | | | | | Existence of additive inverse | | S | Factors,
Multiples and
Primes | Common tactors | Division facts Squares and roots Identify factors, multiple and primes by lisiting | HCF & LCM by listing HCF & LCM in context | Prime Factors (calc and non-calc) Identify factors from prime factor form | HCF & LCM with prime factors (using a | Recap Surds | | Transerable into fractions, algebraic manipulation, proof | | | tions, Decimals | | Convert between fractions, decimals, | Convert between improper fractions and mixed numbers Compare, and order lists of; fractions, decimals, and percentages (simple cases) Convert between improper fractions | Convert between fractions, decimals,
and percentages (including calculator
use)
Compare, and order lists of; fractions,
decimals, and percentages | | | | Ancient Egyptians could calculate with fractions, though they only used fractions with numerators of 1 (the multiplicative inverses) Proof of limits of series may rely on understanding the effect of multiplying fractions, as does combining | | s
 | Indices & Pe | | Index notation | Index Laws (not fractional, negative) Write a number as a power of a base [e.g. 64 = 48] | decimals, and percentages >100%
Index Laws (inc negative) | percentages Index laws for fractional indices standard form add/sub (4 ops) Index Laws negative powers Change of base [8² = 4³] Standard Form | | | probabilities. | | Comparison of vertical lines, yet a year lettering to patients. Such equations graphically interest was a year lettering to patients of the less in gradient. Pot coordinates in all four quadrants. coo | Strand | | Year 6 | Year 7 | Year 8 | Year 9 | Year 10 | Year 11 | Year 12 | Rationale | |--|--------|-------------------------|--|---|--|--|---|---|--|---| | Por cooperate in office of the company compa | S | otation | | [expression, term, rule, etc] Form expressions (no division) Simplify by collecting terms | Expand brackets Factorise to one bracket (number factor) Algebraic index laws Factorise to one bracket (algebraic | simplify Factorise to one bracket Algebraic index laws Expand two subtracted brackets and | factorise quadratics a>1 Expand 3 brackets Complete the square Turning points - translate graphs of quads Alg fractions: simplify add/subtract multiply/divide Simplify alg fractions [(4x + 6)/2] Expand two subtracted brackets and simplify Expand pairs of brackets (a=1) | | Sequences & Series Functions Parametric Equations Trigonometric Functions Further Algebra Trigonometric Identites Differential Equations | Persian mathematician al-Kwarizmi in
the 8 th Century. The word algebra
derives from the islamic word al-jabr | | For international and vertical rise, yet a great planning to partners of productions in all four quadrants. For coordinates in all four quadrants. For a coordinates in all four quadrants. Generate equatrons from for internal security or control of the first planning or control | S
E | rmulae | Substitute into expressions
Use formulae | Form formulae from contexts | Substitute into complex formulae
(Powers and roots)
Change the subject (2 & 3 step) | Substitute into complex formulae [use kinematics formulae] Change subject involving powers and | Change subject involving factorising Substitute into complex formulae (use | | | mathematicians wrote formulas as sentences. As symbolic algebra developed (mainly in the Arab world) it eventually found favour in Europe and was used by Rene Decartes to show that geometric problems could be solved by using algebra (he also popularised the use of x as the unknown). As formulas often model real world situations it can be helpful to rearrange them so that the term to be calculated is | | Generate sequences from term for ferm with received sequences from positional personal form term and | | Ö | 20.000000000000000000000000000000000000 | y=x & y= -x [referring to patterns in coordinates] | Solve equations graphically (intersect
with x=a, y=a)
Gradient & Intercept
Equation of a line (pos int gradient) | Plot ax + by = c Equation of a line from two points Solve linear simultaneous equations graphically | Solve quadratics graphically Solve sim eq linear and quadratic graphically Draw a line to solve a quadratic Translate graphs Plot ax + by = c Equation of a line from two points Equations of parallel lines Solve linear simultaneous equations | | | The method of graphing functions can be extended to two variables, three dimensions, and even the complex plane in illustrating many areas of mathematics, including the Riemann hypothesis, the 'Holy Grail' of | | Form equations from word problems. Solve a gardions [near, 1 & 2 step. [inc 10 - 2x = 4]] [solve equations with unknowns on both sides gardions [linear, 1 & 2 step. [inc 10 - 2x = 4]] [solve equations with unknowns on both sides gardions [linear, 1 & 2 step. [inc 10 - 2x = 4]] [solve equations with unknowns on both sides gardions [linear, 1 & 2 step. [inc 10 - 2x = 4]] [solve equations with unknowns on both sides gardions [linear, 1 & 2 step. [inc 10 - 2x = 4]] [solve equations with unknowns and both sides gardions [linear, 1 & 2 step. [inc 10 - 2x = 4]] [solve equations with unknowns and both sides gardions [linear, 1 & 2 step. [inc 10 - 2x = 4]] [solve equations with unknowns and both sides gardions [linear inclusions] [solve equations with unknowns and both sides gardions [linear inclusions] [solve equations with unknowns and both sides gardions [linear inclusions] [solve equations with unknowns and both sides gardions [solve equations [solv | | ednences | | rule Generate sequences from position-to- term rule Describe patterns with sequences inc | Describe using nth term Relate nth terms to patterns Describe and continue geometric sequences and the fibonacci sequence Describe and continue fibonacci-type | Quadratic sequences [n²+c] Nth term of geometric sequence (simple | Quadratic sequences [an²+bn+c] Quadratic sequences [n²+c] Nth term of geometric sequence (simple | | Moments
Projectile Motion | Mathematicians work with the sums of sequences, called series and is a major part of calculus. This has led to proofs | | Notation, Represent on a number line not Represent on a number line not compound) Solve 2 variable linear inequalities algebraically algebraically solve inequalities (2 step, inc compound) Solve inequalities (2 step, inc compound) Solve compound Solve inequalities graphically Solve inequalities graphically Mathematicians often use inequalities to bound quantifies for which exact formulas cannot be computed easily. Solve linear inequalities (2 step, inc compound) Solve inequalities on a coordinate plane Plot simple quadratics Flot | | quatio | Solve 1 and 2 step equations
Pairs of values for multi-variable | [linear, 1 & 2 step, (inc 10 - 2x = 4)] | Solve equations [linear, 1 & 2 step, 1 bracket] Form equations Solve equations [inc fractions with numerical denominators] | [inc brackets, fractions with numerical denominators] Solve equations with unknowns on both sides Solve linear simultaneous equations without scaling Solve equations with unknowns and brackets on both sides Solve linear simultaneous equations | Solve guadratics using the formula | Inverse functions Trial and improvement Iteration Sim Eq w/ quadratic Factorise and solve quadratic equations (a=1) Linear simultaneous equations | | The equals sign was invented in 1557 by
Welsh mathematician Robert Recorde
who said that "nothing can be more
equal than two parallel lines of equal | | Plot simple quadratics Plot simple quadratics & cubics Equation of circles y = a^x Find approximate solutions transform graphs Plot simple quadratics Plot simple quadratics & cubics Equation of circles y = a^x Flot cubics, y=a^x Plot cubics, y=a^x Recognise non-linear forms | | Inequalities | | Represent on a number line not | compound) Represent on a number line (inc compound) Solve linear inequalities (2 step, inc compound) | compound) Represent inequalities on a coordinate plane | algebraically Combining regions Solve compound Two variable inequalities [list sets of solutions] | algebraically | | formulas cannot be computed easily.
Some inequalities are used so often that | | INDICATION OF THE PROPERTY | S | Jon-
inear
Sraphs | | | Plot simple quadratics Plot simple quadratics | Find approximate solutions | Equation of circles
transform graphs | trig graphs Plot cubics, y=a^x Recognise non-linear forms | | | | Strand | | Year 6 | Year 7 | Year 8 | Year 9 | Year 10 | Year 11 | Year 12 | Rationale | |---------------|-------------------------|---|--|---|--|--|---|---|---| | ange | ation | Use ratio notation | Use ratio notation & simplify
Relate ratios to fractions | Share in a given ratio
Unit ratio | Solve ratio division where one part is known Divide into 3 part ratio | combo ratio
combo questions
Solve ratio division where one part or | | | It was thought that all numbers could
be written as ratios (and, in fact, an
infinite number are). We now know
that there are an infinite number of
irrational numbers that cannot be. | | Sho
D | S Y | | Scaling (recipes)
Equivalence of ratio | Share in a given ratio (inc dec ans) Best buy by scaling Solve simple direct proportion problems | Solve ratio division where one part or
difference is known
Best buy by unit ratio
Solve simple direct or inverse
proportion problems | difference is known Divide into 3 part ratio Solve inverse proportion problems | Write inverse proportion formulae
Solve proportion problems involving 3
variables | | | | of | Proportion | | | Solve simple direct or inverse proportion problems | Write direct (inc squares, roots) proportion formulae | 3 part ratio [m:f,f:c,m:c] combo ratio algebraic & graphically | Write direct and inverse proportion formulae (x and x²) | | In ancient Rome a tax of 1/100 of | | Rates | S | Percentage of amounts without a
calculator
Reverse percentage of amount | Percentage of amounts without a | One number as a percentage of another Compare proportions using percentage Calculate percentages of amounts with a multiplier | Reverse percentage of an amount [40% of a number is 60, what is the number?] Percentage change with a multiplier Percentage profit/loss | Reverse percentage change with a
multiplier
Percentage profit/loss (with repeated
percentage change)
Consecutive % change
[+25% then + 20%, etc]
Simple interest | | Proof Sequences & Series Functions Parametric Equations | every sale at auction was introduced. As denominations of currency grew throughout the Middle Ages, the ability to easily measure 1/100th of an amount (and multiples thereof) became more useful, and led to the decimalisation of most of Europe between the 17th and 18th Centuries. | | ∞
~ | Thercentage | | | Percentage change with a multiplier | Consecutive % change
[+25% then + 20%, etc] | Reverse percentage change with /
without a multiplier
Percentage profit/loss (with repeated
percentage change)
Tax | | Trigonometric Functions Further Algebra Trigonometric Identites Differential Equations Numerical Analysis | | | O | s of
nge | | Calculate speed in simple cases
[Within Distance-Time graphs] | Calculate speed/distance/time | Calculate speed/distance/time in
more complex cases (i.e. multiples of
12 mins) | Compound Measures (Density, Pressure) Dimensional Analysis Convert compound measures | | Moments Projectile Motion Modelling Friction | | | | Rates
Chan | | | Calculate speed/distance/time with multiples of 15 minutes Scale drawing | Calculate with other rates of change/
compound measures
Map scales | [metres/min to Km/hr]
{embed in speed unit} | Compound measures (Density, within Volume unit) | | | | o
O | Scale | | | [1cm = 5m etc] {embed in construction} Harder scale drawing [2cm = 5m etc] {embed in construction} | [1 : 50 000] {embed in loci, bearings} Harder map scales [1 : 125 000] {embed in loci, bearings} | | | | | |), Pr | S | | Plot and interpret (piece-wise linear)
distance-time graphs | Graphs of direct proportion [Use to solve] | Graphs of direct proportion [Use to solve, find gradient and relate to context] | Velocity-time graphs [rate of change, trapezium rule, average speed] Calculate gradients to tangents of curves and interpret in context. | Inverse proportion graphs | | | | atic | Graphs | | | Graphs of direct proportion [Use to solve, find gradient and relate to context] | Graphs of inverse proportion | Graphs of direct proportion [inc. squares] | | | The understanding of rate of change links with acceleration, gradient of a line, conversion rates etc. Graphs of rate of change can be analysed using calculus. | | 22 | Simil
Simil
arity | | | | | Area and Volume scale factors Find lengths/scale factor | | | | | Strand | | Year 6 | Year 7 | Year 8 | Year 9 | Year 10 | Year 11 | Year 12 | Rationale | |------------------|---------------------|---|--|---|--|---|---|------------------------------|---| | S | ape | | Properties of triangles/quadrilaterals
(inc symmetry)
Parts of the circle | Properties of quadrilaterals (inc
symmetry)
Parts of the circle (all) | Pythagoras | 3D Pythag
3D Trig
Non RA Trig
Pythagoras & bearings | Non calc Trig Applications of Trigonmetry [bearings, circle theorems etc.] Non calc Trig | | Classification Projective geometry Topology | | | Perimeter & Area Sh | Perimeter and area of rectilinear | Area of parallelogram, triangle,
trapezium
Area and perimeter of rectilinear
shapes | Classifying quadrilaterals Circumference and area of circles Area of compound shapes (not circles) Area of compound shapes (inc circles) | 3D Pythagoras Arcs & Sectors (easy fractions of turn) Arcs & Sectors (other fractions of turn) | Trigonometry (Right angled only) Reverse arc & sector (find angle) area of segment Arcs & Sectors | Applications of area formulae | | Calculating area is a key application of integral calculus, which can be transferred to functions in higher dimensions, probability density theory, and kinematics. | | res | ction | | Triangle construction including SSS | Scale Drawing
Recall standard constructions | Combinations of Loci | | Review inc scale, bearings Construction, scale drawing, | | These techniques are a key step in understanding Euclidean Geometry (c. 200 BCE), which is the foundation upon which all modern mathematics | | S C S | Constru | | Reflect (horiz and vert only) | I DOMESTICAL TO CONTROL OF THE CONT | Construction, congruence and proof Describe reflections & rotations | Bearings Transformations inc. negative | combinations of Loci Similarity, congruence (reference enlargement) Magnitude of a vector Vector proof | on Trigonometry Vectors tors | | | / & Me | Transformation | Reflection over axes Translation (no vector notation) Enlarge by positive integer sf (no centre) | Rotate | | Enlarge (inc Fractional enlargement) Combine translations (Vector addition) | Enlargement Enlarge including fractional Combinations of transformations Combine translations (Vector addition) | [using ratio, prove parallel, etc] Vector addition, multiplication by a scalar Represent a 2-dimensional vector and draw olumn vectors on a square or coordinate grid. | Trigonometry
Vectors | The ideas of transforming shapes on a plane can be extended into higher dimensions. Matrices are often introduced through their ability to perform transformations | | metry | | Measure and draw
Angle facts
Angles in a triangle
Angles in a quadrilateral
Angles in polygons | Notation
Angle facts
Angles in triangle, quadrilateral, angle
properties
Exterior angles of reg polygons | tiangle sum is 180°) | Int angles of polygons
Angle proof (congruence, similarity) | Circle theorems | | | 360° was chosen to be the number of degrees (parts) of a full turn by the Babylonians in around 1000 BCE. Other angle measurement systems include radians and gradians, which break the full turn up into different sized degrees. Geometric proots were some of the earliest to be formulated, introducing | | 9
O
O
O | Angles | | Names (+ faces, edges, vertices) | Back bearings Plans & elevations | Angle proof inc Isosceles triangles in circles Nets of 3D shapes | Int angles of polygons
Angle proof (congruence, similarity) | | | the concept of abstract proof and mathematics as a discipline. Angles can be used to visualise complex numbers in the field of complex analysis. | | S E | 3D Shape | | Volume of prisms
Construct shapes from nets | Construct shapes from nets | Surface area of prisms Volume of cylinders DONE Vol cylinders SA + Volume of pyramids | Cones, spheres, frustums, pyramids Surface area of cylinders Surface Area and Volume of Spheres, Cones, Pyramids and Composite solids Plans & Elevations | Applications of volume formulae | | Calculating volume by considering small slices was key in the development of integral calculus, which can be transferred to functions in higher dimensions, probability density theory, and kinematics. | | | asures | | Convert metric measures
Calculate with time and timetables | Convert between metric area | Convert between metric area and volume | | | | Atter the French Revolution (1789-99) the opportunity arose for a completely new measurement system. The French Academy of Sciences decided that | | | Med | were reported to the resolution of resoluti | 5 - 52 - 55 | Solve problems involving area unit conversion | Solve problems involving volume unit conversion | See Ratio, Proportion and Rates of
Change | | | | | Strand | | Year 6 | Year 7 | Year 8 | Year 9 | Year 10 | Year 11 | Year 12 | Rationale | |--------------|--------------|--|--|---|---|---|---|--|--| | bability | s | | Bar charts [compound and comparitive] Time series Timetables | Frequency diagram Frequency polygon Pie charts | Scattergraphs
Stem & Leaf | Histograms
Box plots | Recap of data | | | | | Representing | Time series
Read and interpret pie charts | | Calculating quantities from pie charts | | Scattergraphs | Misleading graphs, sampling bias and questionnaires | | Data visualisations have the power to communicate information clearly. However, they can also be manipulated to mislead. Understanding time series graphs helps students to understand the concepts of rate of change, which in turn introduces kinematics, financial rates and derivative calculus. | | & Pro | S | | Probability scale Probability as a fraction (inc sum to 1) Listing outcomes complete probability space | Two-way tables Venn diagrams Experimental [find P(outcome) from experiment] | Frequency trees Probability tree diagrams [independent only] Set notation inc shading Relative frequency [use past data to make | Probability trees (inc dependent)
Venn probability
[P out of a subset, not a whole] | | Conditional Probability Statistical Distributions Statistical Hypothesis Testing Staistical Sampling | Understanding probability was perhaps initially driven by games of chance, but also has been used in cryptography and cryptanalysis since the 8th century. | | Statistics & | Probability | | | Judge bias | Comparisons with expected values | Prequency frees Probability tree diagrams [independent only] Set notation inc shading Relative frequency [use past data to make predictions] Relative frequency graphs Judge bias | | | Now used in risk assessment and modelling, in particular in finance, but also in medicine, behavioural science and biology. It is key to understanding quantum theory. | | | Describing | Mean
Mean from frequency table | Averages and range collect data in frequency table Mode from frequency table | Complete data knowing averages
Mean from frequency table
Median from freq table | Complete grouped frequency Estimate mean from grouped frequency Identify group containing median | Interpret cumulative frequency graph
(top 10% pass, etc)
Compare data sets using box plots
Problem solve with averages
Median from freq table | Recap Data Handling | | The arithmetic mean was developed by astronomers in the 16th Century, knowing that variance in their records was more likely to be errors in measurement than the moon changing size. |